INCOMING TRANSMISSION

LATEST UPDATES
背景 RLHF 通常包括三个阶段: 有监督微调(SFT) 奖励建模阶段 (Reward Model) RL微调阶段 直接偏好优化(DPO) 传统的RLHF方法分两步走: 1. 先训练一个奖励模型来判断哪个回答更好 1. 然后用强化学习让语言模型去最大化这个奖励 这个过程很复杂,就像绕了一大圈:先学习"什么是好的",再学习"如何做好"。 DPO发现了一个数学上的捷径: 1. 关键发现:对于任何奖励函数,都存在一个对应的最优策略(语言模型);反过来说,任何语言模型也隐含着一个它认为最优的奖励函数 1. 直接优化:与其先训练奖励模型再训练语言模型,不如直接训练语言模型,让它自己内化"什么是好的" 1. 数学转换:DPO将"学习判断好坏"和"学习生成好内容"这两个任务合二为一,通过一个简单的数学变换...
模型概述 KimiVL 是一个高效的开源混合专家视觉语言模型(VLM),它提供先进的多模态推理、长上下文理解和强大的代理能力,同时在语言解码器中仅激活 2.8B 参数(KimiVLA3B)。该模型在多种挑战性任务中表现出色,包括一般用途的视觉语言理解、多轮代理任务、大学水平的图像和视频理解、OCR、数学推理和多图像理解等. 模型架构 KimiVL 的架构由三个主要部分组成: MoE语言模型 Moonlight MoE language model with only 2.8B activated (16B total) parameters 视觉模型 400M nativeresolution MoonViT vision encoder. MLP Projector MoonViT: 原生...
UITARS 简介 UITARS(User Interface Task Automation and Reasoning System)是由字节跳动(ByteDance)研发的原生 GUI 智能体模型: 输入方式:仅使用屏幕截图作为视觉输入 交互方式:执行类人操作(键盘输入、鼠标点击、拖拽等) 模型特性:端到端的原生智能体模型,无需复杂的中间件或框架 传统 GUI 智能体的开发往往依赖于文本信息,例如 HTML 结构和可访问性树。虽然这些方法取得了一些进展,但它们也存在一些局限性: 平台不一致性:不同平台的 GUI 结构差异很大,导致智能体难以跨平台通用。 信息冗余:文本信息往往过于冗长,增加了模型的处理负担。 访问限制:获取系统底层的文本信息通常需要较高的权限,限制了应用的范围。 模块化...
Stanford Alpaca 结合英文语料通过Self Instruct方式微调LLaMA 7B Stanford Alpaca简介 2023年3月中旬,斯坦福的Rohan Taori等人发布Alpaca(中文名:羊驼):号称只花100美元,人人都可微调Meta家70亿参数的LLaMA大模型(即LLaMA 7B),具体做法是通过52k指令数据,然后在8个80GB A100上训练3个小时,使得Alpaca版的LLaMA 7B在单纯对话上的性能比肩GPT3.5(textdavinci003),这便是指令调优LLaMA的意义所在 论文《Alpaca: A Strong OpenSource InstructionFollowing Model》 GitHub地址:https://github.c...
论文名称:LLaMA: Open and Efficient Foundation Language Models 论文地址: https://arxiv.org/pdf/2302.13971.pdf 代码链接: https://github.com/facebookresearch/llama 背景 模型参数量级的积累,或者训练数据的增加,哪个对性能提升帮助更大? 以 GPT3 为代表的大语言模型 (Large language models, LLMs) 在海量文本集合上训练,展示出了惊人的涌现能力以及零样本迁移和少样本学习能力。GPT3 把模型的量级缩放到了 175B,也使得后面的研究工作继续去放大语言模型的量级。大家好像有一个共识,就是:模型参数量级的增加就会带来同样的性能提升。 但...
背景 随着预训练语言模型进入LLM时代,其参数量愈发庞大。全量微调模型所有参数所需的显存早已水涨船高。 例如: 全参微调Qwen1.57BChat预估要2张80GB的A800,160GB显存 全参微调Qwen1.572BChat预估要20张80GB的A800,至少1600GB显存。 而且,通常不同的下游任务还需要LLM的全量参数,对于算法服务部署来说简直是个灾难 当然,一种折衷做法就是全量微调后把增量参数进行SVD分解保存,推理时再合并参数 为了寻求一个不更新全部参数的廉价微调方案,之前一些预训练语言模型的高效微调(Parameter Efficient finetuning, PEFT)工作,要么插入一些参数或学习外部模块来适应新的下游任务。 LoRA LoRA(LowRank Adapt...
SeedThinkingv1.5 SeedThinkingv1.5 是 ByteDance Seed 团队开发的一个先进推理模型,采用 MixtureofExperts (MoE) 架构,具有 200B 总参数和 20B 激活参数。该模型的核心创新在于其"思考后回答"的机制,在数学、编程、科学推理等任务上取得了卓越的性能。相比DeepSeek R1 ,在很多数据指标上都取得了一定程度的进步。 数据 训练数据分为两大类:可验证问题(有明确答案)和不可验证问题(无明确答案)。模型的推理能力主要来自第一部分,并能泛化到第二部分。 可验证问题数据 可验证数据主要包含 STEM数据, 编程数据,以及逻辑推理数据 STEM 数据 编程数据 逻辑推理数据 不可验证问题数据 这其中的数据主要包含需要基于人类...
Chameleon:生成理解统一模型的开山之作 🔖 https://arxiv.org/pdf/2405.09818 Chameleon 是一个既能做图像理解,又可以做图像或者文本生成任务的,从头训练的 Transformer 模型。完整记录了为实现 mixedmodal 模型的架构设计,稳定训练方法,对齐的配方。并在一系列全面的任务上进行评估:有纯文本任务,也有图像文本任务 (视觉问答、图像字幕),也有图像生成任务,还有混合模态的生产任务。 如下图所示,Chameleon 将所有模态数据 (图像、文本和代码) 都表示为离散 token,并使用统一的 Transformer 架构。训练数据是交错混合模态数据 ∼10T token,以端到端的方式从头开始训练。文本 token 用绿色表示,图像...
通常我们训练神经网络模型的时候默认使用的数据类型为单精度FP32。近年来,为了加快训练时间、减少网络训练时候所占用的内存,并且保存训练出来的模型精度持平的条件下,业界提出越来越多的混合精度训练的方法。这里的混合精度训练是指在训练的过程中,同时使用单精度(FP32)和半精度(FP16)。 浮点数据类型 浮点数据类型主要分为双精度(FP64)、单精度(FP32)、半精度(FP16)。在神经网络模型的训练过程中,一般默认采用单精度(FP32)浮点数据类型,来表示网络模型权重和其他参数。在了解混合精度训练之前,这里简单了解浮点数据类型。 根据IEEE二进制浮点数算术标准(IEEE 754)的定义,浮点数据类型分为双精度(FP64)、单精度(FP32)、半精度(FP16)三种,其中每一种都有三个不同的...
简介 模型结构 32K词表大小 2T训练数据 4K上下文长度 模型种类:7B、13B、70B(用了GQA) LLaMA 2Chat:三个版本——7B 13B 70B 同时 Meta 还发布了 LLaMA 2CHAT,其是基于 LLAMA 2 针对对话场景微调的版本,同样 7B、13B 和 70B 参数三个版本,具体的训练方法与ChatGPT类似 1. 先是监督微调LLaMA2得到SFT版本 (接受了成千上万个人类标注数据的训练,本质是问题答案对 ) 1. 然后使用人类反馈强化学习(RLHF)进行迭代优化 先训练一个奖励模型 然后在奖励模型/优势函数的指引下,通过拒绝抽样(rejection sampling)和近端策略优化(PPO)的方法迭代模型的生成策略 LLAMA 2 的性能表现更加接近...
概述 Kimi k1.5采用了一种简化而有效的强化学习框架,其核心在于长上下文扩展和改进的策略优化方法,而不依赖于更复杂的技术如蒙特卡洛树搜索、价值函数和过程奖励模型。 问题设定 给定训练数据集 D = \{(x_i, y^_i)\}_{i=1}^n ,其中包含问题 x_i 和对应的真实答案 y^_i ,目标是训练一个策略模型 [Math] 来准确解决测试问题。在复杂推理场景中,思维链(CoT)方法提出使用一系列中间步骤 z = (z_1, z_2, ..., z_m) 来连接问题 x 和答案 y ,每个 z_i 是解决问题的重要中间步骤。 当解决问题 x 时,思维 [Math] 被自回归采样,最终答案 [Math] 。 强化学习目标 基于真实答案 y^ ,分配一个值 [Math] , Ki...