随机森林 (Random Forests) 是一种利用CART决策树作为基学习器的 Bagging 集成学习算法。随机森林模型的构建过程如下:
-
数据采样
作为一种 Bagging 集成算法,随机森林同样采用有放回的采样,对于总体训练集 \(T\),抽样一个子集 \(T_{sub}\) 作为训练样本集。除此之外,假设训练集的特征个数为 \(d\),每次仅选择 \(k(k<d)\) 个构建决策树。因此,随机森林除了能够做到样本扰动外,还添加了特征扰动,对于特征的选择个数,推荐值为$ k=log_2d $。 -
树的构建
每次根据采样得到的数据和特征构建一棵决策树。在构建决策树的过程中,会让决策树生长完全而不进行剪枝。构建出的若干棵决策树则组成了最终的随机森林。
随机森林在众多分类算法中表现十分出众,其主要的优点包括:
- 由于随机森林引入了样本扰动和特征扰动,从而很大程度上提高了模型的泛化能力,尽可能地避免了过拟合现象的出现。
- 随机森林可以处理高维数据,无需进行特征选择,在训练过程中可以得出不同特征对模型的重要性程度。
- 随机森林的每个基分类器采用决策树,方法简单且容易实现。同时每个基分类器之间没有相互依赖关系,整个算法易并行化。
随机森林的推广
由于RF在实际应用中的良好特性,基于RF,有很多变种算法,应用也很广泛,不光可以用于分类回归,还可以用于特征转换,异常点检测等。下面对于这些RF家族的算法中有代表性的做一个总结。
extra trees
extra trees是RF的一个变种, 原理几乎和RF一模一样,仅有区别有:
1) 对于每个决策树的训练集,RF采用的是随机采样bootstrap来选择采样集作为每个决策树的训练集,而extra trees一般不采用随机采样,即每个决策树采用原始训练集。
2) 在选定了划分特征后,RF的决策树会基于基尼系数,均方差之类的原则,选择一个最优的特征值划分点,这和传统的决策树相同。但是extra trees比较的激进,他会随机的选择一个特征值来划分决策树。
从第二点可以看出,由于随机选择了特征值的划分点位,而不是最优点位,这样会导致生成的决策树的规模一般会大于RF所生成的决策树。也就是说,模型的方差相对于RF进一步减少,但是偏倚相对于RF进一步增大。在某些时候,extra trees的泛化能力比RF更好。
Totally Random Trees Embedding
Totally Random Trees Embedding(以下简称 TRTE)是一种非监督学习的数据转化方法。它将低维的数据集映射到高维,从而让映射到高维的数据更好的运用于分类回归模型。我们知道,在支持向量机中运用了核方法来将低维的数据集映射到高维,此处TRTE提供了另外一种方法。
TRTE在数据转化的过程也使用了类似于RF的方法,建立T个决策树来拟合数据。当决策树建立完毕以后,数据集里的每个数据在T个决策树中叶子节点的位置也定下来了。比如我们有3颗决策树,每个决策树有5个叶子节点,某个数据特征x划分到第一个决策树的第2个叶子节点,第二个决策树的第3个叶子节点,第三个决策树的第5个叶子节点。则x映射后的特征编码为(0,1,0,0,0, 0,0,1,0,0, 0,0,0,0,1), 有15维的高维特征。这里特征维度之间加上空格是为了强调三颗决策树各自的子编码。
映射到高维特征后,可以继续使用监督学习的各种分类回归算法了。
Isolation Forest
Isolation Forest(以下简称IForest)是一种异常点检测的方法。它也使用了类似于RF的方法来检测异常点。
对于在T个决策树的样本集,IForest也会对训练集进行随机采样,但是采样个数不需要和RF一样,对于RF,需要采样到采样集样本个数等于训练集个数。但是IForest不需要采样这么多,一般来说,采样个数要远远小于训练集个数?为什么呢?因为我们的目的是异常点检测,只需要部分的样本我们一般就可以将异常点区别出来了。
对于每一个决策树的建立, IForest采用随机选择一个划分特征,对划分特征随机选择一个划分阈值。这点也和RF不同。
另外,IForest一般会选择一个比较小的最大决策树深度max_depth,原因同样本采集,用少量的异常点检测一般不需要这么大规模的决策树。
对于异常点的判断,则是将测试样本点\(x\)拟合到\(T\)颗决策树。计算在每颗决策树上该样本的叶子节点的深度\(h_t(x)\)。从而可以计算出平均高度\(h(x)\)。此时我们用下面的公式计算样本点\(x\)的异常概率:
其中,\(m\)为样本个数。\(c(m)\)的表达式为:
𝜉为欧拉常,\(s(x,m)\)的取值范围是[0,1],取值越接近于1,则是异常点的概率也越大。