INCOMING TRANSMISSION

LATEST UPDATES
这是OpenCompass的offitial ranking 榜单 🔖 https://rank.opencompass.org.cn/home MMBench 鉴于现行评测方式所存在的问题,我们重新定义了一套针对当前多模态大模型的评测流程——MMBench。其主要包含两个方面: 自上而下的能力维度设计,根据定义的能力维度构造了一个评测数据集 引入 ChatGPT,以及提出了 CircularEval 的评测方式,使得评测的结果更加稳定 Paper 链接: 🔖 https://arxiv.org/pdf/2307.06281 github: 数据集 数据集构造 主要目的是对模型的各种能力进行全方位的考察,所以我们自上而下定义了三级能力维度 (L1L3), 第一级维度(L1)包含感知与推理两项...
训练数据 Pretrain 558K Llava pretrain imagetext pair 695K ALLaVA dataset FineTuning Pretrain and Finetune 代码 参数 [代码] 首先使用transformers.HfArgumentParser类解析命令行参数,该类的作用是将命令行参数解析为dataclass对象。dataclass是Python3.7中引入的一个新特性,通过dataclass可以方便地定义一个类,并且可以自动实现__init__、__repr__等方法 [代码] 然后通过parser.parse_args_into_dataclasses()方法解析命令行参数,并将解析结果保存到model_args、data_args和tra...
简介 该工作建立了一个GCG(Grounded Conversation Generation )的数据集和对应多模态大模型,与之前的工作主要的区别在于针对输入图像,可以生成grounding pixellevel理解的语言对话,如下图示例所示: Model Automated Dataset Annotation Pipeline level 1: Object locatlization and attributes 1. Landmark Categorization 基于LLaVA模型对图像做场景的分类, 包含主要场景和细粒度场景。就是对数据集整体做一个大的类别标签和子类别标签,做场景的划分 [代码] 2. Depth Map Estimation 通过MiDaS v3.1 一个单目...
NLP
2025-01-02
1. 什么是NGram模型 NGram是一种基于统计语言模型的算法。它的基本思想是将文本里面的内容按照字节进行大小为N的滑动窗口操作,形成了长度是N的字节片段序列。 每一个字节片段称为gram,对所有gram的出现频度进行统计,并且按照事先设定好的阈值进行过滤,形成关键gram列表,也就是这个文本的向量特征空间,列表中的每一种gram就是一个特征向量维度。 该模型基于这样一种假设,第N个词的出现只与前面N1个词相关,而与其它任何词都不相关,整句的概率就是各个词出现概率的乘积。这些概率可以通过直接从语料中统计N个词同时出现的次数得到。常用的是二元的BiGram和三元的TriGram。 说完了ngram模型的概念之后,下面讲解ngram的一般应用。 2. NGram模型用于评估语句是否合理 如果...
🔖 https://docs.dify.ai/zhhans/gettingstarted/installselfhosted Docker 按照官方文档说明配置即可 https://docs.dify.ai/zhhans/gettingstarted/installselfhosted/dockercompose 源码安装 参考官方步骤, 需要补充一些内容 https://docs.dify.ai/zhhans/gettingstarted/installselfhosted/localsourcecode 在启动API 服务之前需要安装PostgreSQL数据库和Redis Postgres安装配置(非Root) 下载二进制编译好的安装包, 下载地址在这里 解压并创建data目录 初始化d...
背景 随着预训练语言模型进入LLM时代,其参数量愈发庞大。全量微调模型所有参数所需的显存早已水涨船高。 例如: 全参微调Qwen1.57BChat预估要2张80GB的A800,160GB显存 全参微调Qwen1.572BChat预估要20张80GB的A800,至少1600GB显存。 而且,通常不同的下游任务还需要LLM的全量参数,对于算法服务部署来说简直是个灾难 当然,一种折衷做法就是全量微调后把增量参数进行SVD分解保存,推理时再合并参数 为了寻求一个不更新全部参数的廉价微调方案,之前一些预训练语言模型的高效微调(Parameter Efficient finetuning, PEFT)工作,要么插入一些参数或学习外部模块来适应新的下游任务。 Adapter tuning Adapter ...
PrefixTuning Paper: 2021.1 Optimizing Continuous Prompts for GenerationGithub:https://github.com/XiangLi1999/PrefixTuningPrompt: Continus Prefix PromptTask & Model:BART(Summarization), GPT2(Table2Text) 最早提出Prompt微调的论文之一,其实是可控文本生成领域的延伸,因此只针对摘要和Table2Text这两个生成任务进行了评估。 PrefixTuning可以理解是CTRL模型的连续化升级版,为了生成不同领域和话题的文本,CTRL是在预训练阶段在输入文本前加入了control code,例如好评...
背景 随着预训练语言模型进入LLM时代,其参数量愈发庞大。全量微调模型所有参数所需的显存早已水涨船高。 例如: 全参微调Qwen1.57BChat预估要2张80GB的A800,160GB显存 全参微调Qwen1.572BChat预估要20张80GB的A800,至少1600GB显存。 而且,通常不同的下游任务还需要LLM的全量参数,对于算法服务部署来说简直是个灾难 当然,一种折衷做法就是全量微调后把增量参数进行SVD分解保存,推理时再合并参数 为了寻求一个不更新全部参数的廉价微调方案,之前一些预训练语言模型的高效微调(Parameter Efficient finetuning, PEFT)工作,要么插入一些参数或学习外部模块来适应新的下游任务。 LoRA LoRA(LowRank Adapt...
简介 模型结构 32K词表大小 2T训练数据 4K上下文长度 模型种类:7B、13B、70B(用了GQA) LLaMA 2Chat:三个版本——7B 13B 70B 同时 Meta 还发布了 LLaMA 2CHAT,其是基于 LLAMA 2 针对对话场景微调的版本,同样 7B、13B 和 70B 参数三个版本,具体的训练方法与ChatGPT类似 1. 先是监督微调LLaMA2得到SFT版本 (接受了成千上万个人类标注数据的训练,本质是问题答案对 ) 1. 然后使用人类反馈强化学习(RLHF)进行迭代优化 先训练一个奖励模型 然后在奖励模型/优势函数的指引下,通过拒绝抽样(rejection sampling)和近端策略优化(PPO)的方法迭代模型的生成策略 LLAMA 2 的性能表现更加接近...
论文名称:LLaMA: Open and Efficient Foundation Language Models 论文地址: https://arxiv.org/pdf/2302.13971.pdf 代码链接: https://github.com/facebookresearch/llama 背景 模型参数量级的积累,或者训练数据的增加,哪个对性能提升帮助更大? 以 GPT3 为代表的大语言模型 (Large language models, LLMs) 在海量文本集合上训练,展示出了惊人的涌现能力以及零样本迁移和少样本学习能力。GPT3 把模型的量级缩放到了 175B,也使得后面的研究工作继续去放大语言模型的量级。大家好像有一个共识,就是:模型参数量级的增加就会带来同样的性能提升。 但...
Stanford Alpaca 结合英文语料通过Self Instruct方式微调LLaMA 7B Stanford Alpaca简介 2023年3月中旬,斯坦福的Rohan Taori等人发布Alpaca(中文名:羊驼):号称只花100美元,人人都可微调Meta家70亿参数的LLaMA大模型(即LLaMA 7B),具体做法是通过52k指令数据,然后在8个80GB A100上训练3个小时,使得Alpaca版的LLaMA 7B在单纯对话上的性能比肩GPT3.5(textdavinci003),这便是指令调优LLaMA的意义所在 论文《Alpaca: A Strong OpenSource InstructionFollowing Model》 GitHub地址:https://github.c...